Photon-Jet studies at RHIC

Recent jet-like correlation measurements and a way towards photon-triggered jets at RHIC

Nihar Ranjan Sahoo

Texas A&M University

RHIC/AGS Annual Users' Meeting, 2016

Why we should study y-jet in heavy ion collisions?

Direct photon+jet coincidence is a good tomographic probe to study the QGP in HIC

- Doesn't interact with QCD medium
- Transverse energy
 approximates that of initial parton pT in γ-jet events
- volume emission dominates for γ-trigger events

Compelling measurements:

- γ-hadron correlations (advantage in AuAu due to bg.)
- y-tagged jet reconstruction

What physics we are looking for?

- Parton energy loss in QCD medium depends on
 - Initial energy of parton, color factor, path length, gluon density, transport coefficient, etc.

An interesting comparison with π^0 -jet

- Recoil parton from direct photon predominantly quarks, whereas that of π⁰ are gluons (D. de Florian et al., PRD 91, 014035 (2015), T. Kaufmann et al., PRD 92, 054015 (2015))
 - γ -triggered parton (jet) loses less energy than that of π^0 -trigger
 - due to color factor ($C_A/C_F = 9/4$)
- γ -triggers are mainly volume emission, whereas π^0 -triggers are surfaced biased
 - on ave. γ -triggered parton (jet) loses less energy than that of π^0 -trigger
 - due to path length
- Energy loss as a function of
 - Trigger p_T of direct photon
 - Associated hadron p_T

Experimental techniques and challenges

- Direct photon discrimination from neutral hadrons (like π^0 , η)
 - STAR experiment: Transverse shower profile method
 - PHENIX experiment: Statistical subtraction method (from meson decays)
 - Isolation cuts
- Background subtraction
 - Underlying event bg., flow component in azimuthal correlations, etc... both in γ-hadron correlation and in γ-tagged jet reconstruction
- Different systematic effects from unknown sources
- Finally, we need large statistics

Observables at RHIC

$$\begin{split} I_{AA}(x) &= \frac{Y^{Au+Au}(x)}{Y^{p+p}(x)} & \text{Ratio of Au+Au to p+p per trigger yields} \\ \text{Where} \quad x &= \quad p_T^{\gamma} & \text{Trigger p}_T \\ &= \quad p_T^{assoc} & \text{Associated hadron p}_T \\ &= \quad z_T \ (= \frac{p_T^{assoc}}{p_T^{\gamma}}) & \text{Fraction of momentum carried by the away-side hadron} \end{split}$$

Jet-like azimuthal correlation functions

STAR experiment

- In γ_{rich} small peak due to some contamination of π^0
- Background subtracted from flow modulated background level determined using ZYA1 method
- Near-side yield is by definition zero for direct-photon trigger

PHENIX experiment

- γ_{dir}-hadron correlations in p+p and Au+Au
 - At low z_T , sys. uncertainty due to higher flow (n>2) components seems noticeable in Au+Au

Associated yields of π⁰-hadron correlations

From STAR experiment

Some discussion of π^0 –hadron correlations

- Near-side and away-side yields are extracted within $|\Delta \mathbf{\phi}| \le 1.4$ and $|\Delta \mathbf{\phi} \pi| \le 1.4$
- Away-side yields show suppression
- Near-side shows no suppression
- ■By integrating z_T times near-side yields, STAR exp. estimated 85(±3)% fraction of energy carried by $π^0$ over "jet energy" ($π^0$ + charged hadrons) in pp 200 GeV
- In PYTHIA, it is found to be 80(±5)% which is consistent with data

Yields associated with Y_{dir} – trigger: Fragmentation function

PRL 111, 032301 (2013)

- Fragmentation function is modified
- Not const. at all z_T/ξ

PHENIX experiment

Using statistical subtraction method:

$$Y_{\rm dir} = \frac{R_{\gamma} Y_{\rm inc} - Y_{\rm dec}}{R_{\gamma} - 1}$$

Where,
$$Y_{inc} = \frac{1}{N_{inc}} \frac{dN^{h-\gamma_{inc}}}{d\Delta\phi}$$

$$R_{\gamma} = rac{N_{inc}}{N_{dec}}$$
 ~1.4 to ~2.3 vs. p_T

PRL 109, 152302 (2012).

Yields associated with Y_{dir} – trigger: Fragmentation function

STAR experiment

$$Y_{\gamma_{dir}+h} = \frac{Y_{\gamma_{rich}+h}^a - RY_{\pi^0+h}^a}{1 - R}$$

 $Y_{\gamma_{rich+h}}^{a(n)}$ and $Y_{\pi^0+h}^{a(n)}$: away-side (near-side) yields of associated particles per $Y_{\rm rich}$ and π^0 trigger, respectively.

Purity of γ^{rich} sample

$$1 - R = \frac{N_{\gamma^{dir}}}{N_{\gamma^{rich}}}$$

(1-R) are ~40% and ~70% for p+p and Au+Au central (0-12%) collisions, respectively

- Fragmentation function is modified
- Away-side yields show suppression in Au+Au collisions as compared with p+p

Nuclear modification factor: I_{AA} of Y_{dir} and π^0

STAR experiment

- Within large uncertainties, $I_{AA}^{z_T}$ and I_{AA}^{Ydir-h} show
 - similar suppression: No clear path length and color factor effect observed
 - strong suppression: particularly for $z_T > 0.2$
- Indication of less suppression at low zT, but not significant
 - More significant effect in I_{AA} (p_Tassoc)
- Models are consistent with data

Nuclear modification factor: I_{AA} of Y_{dir}

- At low z_T, I_{AA} is less suppressed at high p_T^{trig} than at low p_T^{trig}
- At high z_T, similar level suppression in both p_T^{trig} regions
- Redistribution of energy in YaJEM model to differentiate between PHENIX and STAR I_{AA}
- Qin, ZOWW models don't show enhancement at low z_T (for 12-20 GeV/c)

Comparison with other theoretical model

Only considering trend of I_{AA} as a function of z_T

Unlike Qin, ZOWW models, YaJEM model includes energy loss by gluon radiation that redistributed to soft particles

Hence, large enhancement at low z_T compared with high z_T

Energy loss in azimuthal windows

- High trigger p_T, no recovery of energy loss even at wider azimuthal angle
 [12 < p_Ttrig < 20 GeV/c → 0.1 < z_T < 0.4 → 1.2 < p_Tasso < 8 GeV/c]
- Low trigger p_T, recovery at smaller z_T
 [5< p_T^{trig} < 9 GeV/c → 0.1< z_T < 0.4 → 0.5 < p_T^{asso} < 3.6 GeV/c]

soft particles coming out at wider azimuthal window !!!!

Energy Loss as a function of associated hadron p_T

arXiv:1604.01117

- Soft associated particles are less suppressed compared with high p_T
- Energy loss as a function of z_T and associated hadron p_T respond similarly

Energy Loss as a function of triggered direct photon p_T

Energy loss is insensitive to the energy of triggered direct photon at high p_T (8-20 GeV/c)

arXiv:1604.01117

What we have observed so far?

From RHIC measurements

- Within uncertainties, no clear path length and color factor effect observed in π^0 vs. γ triggers !!!!
 - May be these effects are very sensitive!!!!
 - Precision measurement may be required
- "Modified" FF not independent of p_T^{trig}
- Less suppression or even enhancement at low p_T assoc
- Soft particles (p_Tassoc < 2 GeV/c) coming out at wider azimuthal angles
- Energy loss is insensitive to the energy of triggered γ at high p_T (8-20 GeV/c) at RHIC

What next?

γ tagged Jet reconstruction-

Full jet reconstruction can give us full energy of away-side recoil parton (But there are many experimental challenges)

Direct photon tagged jet reconstruction at RHIC

- Including π^0 suppression in HIC, γ/π^0 ratio exceeds unity above $p_T > 15$ GeV
- In pp, we need to do proper isolation cut
- It is possible to have γ-jet measurement at top RHIC
- Along with that comparison with π⁰-jet measurement could also be interesting too

Better to have simulation study before data analysis.....

Pythia simulation study of γ-Jet measurement

- HT trigger can provide neutral triggers (π^0, γ) in STAR experiment
- Preliminary simulation studies using Pyhthia8 have been done

γ-tagged recoil jet in Pythia8

Uncorrelated jet are used to subtract background

Comparison charged vs full jet reconstruction

For full Jet reconstruction, nice peak at 15 < p_T^{trig} < 20 GeV/c
 Work is ongoing using STAR data for Au+Au and p+p collisions.....

Summary and Outlook

- I_{AA} measurement for γ -trigger hadron correlations is discussed from low to high p_T range (5-9 and 12-20 GeV/c) at RHIC
- Within uncertainties, no clear path length and color factor effect observed in π^0 vs. γ triggers !!!!
 - May be these effects are very sensitive!!!!
 - Precision measurement may be required
- "Modified" FF not independent of p_T^{trig}
- Less suppression or even enhancement at low p_T assoc
- Soft particles (p_T^{assoc} < 2 GeV/c) coming out at wider azimuthal angles
- Energy loss is insensitive to the energy of triggered γ at high p_T (8-20 GeV/c) at RHIC

Work is ongoing in STAR experiment to measure both γ - and π^0 -tagged charged/Full jet reconstruction to have good understanding on parton energy loss at RHIC energy....

In the Future - sPHENIX ...

Interesting Direct photon-Jet physics is ongoing at RHIC

Stay tuned.....

Thank you!

Back Up

Transverse shower profile method

E_{cluster}: Cluster energy, e_i: BSMD strip energy, r_i: distance of the strip from the center of the cluster

- Wider shower represents small TSP and vise versa
 - TSP cuts tuned to get
 - a nearly pure sample of π^0 (called " π^0_{rich} ")
 - a sample of enhanced fraction of γ_{dir} (γ_{rich})